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Abstract

Arches are often connected to other members which influence the structural behaviour of the arch. These members

induce restraining actions during flexural-torsional buckling which restrict the buckled shapes of the arch and may

significantly influence its buckling response. This paper uses an energy method to study the elastic flexural-torsional

buckling of continuously restrained arches of doubly symmetric open thin-walled cross-section in uniform bending and

in uniform axial compression. Closed form solutions for the flexural-torsional buckling moment of restrained arches in

uniform bending and for the flexural-torsional buckling load of restrained arches in uniform axial compression are

obtained. It is found that the elastic continuous restraints are more effective in increasing the buckling resistance for

arches with a large included angle than for arches with a small included angle. The first buckling mode may not

correspond to the lowest buckling moment or load for arches restrained by minor axis rotational or lateral-translational

restraints. It is also found that the number of half sine waves corresponding to the lowest buckling moment or load

increases with the stiffness of the restraints. For restrained arches in uniform axial compression, when the restraining

stiffness exceeds a limiting value, the buckling mode may change from flexural-torsional to torsional. � 2002 Published
by Elsevier Science Ltd.
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1. Introduction

Arches are often connected one to another by other structural members which influence in the flexural-
torsional buckling action of the arch, and which may significantly influence its flexural-torsional buckling
load. Roof sheeting, braces and secondary members such as purlins (Fig. 1) often have the function of
increasing the buckling resistance of the arch, while fulfilling their other obvious structural roles. Such
braces induce restraining actions which restrict the buckled configuration of the arch, and increase its
buckling resistance. Continuous restraints are usually considered to be uniform along the length of an arch,
and are often used to approximate the actions of discrete restraining members which are connected to the
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Nomenclature

A cross-section area
an ¼ L=ðRnpÞ
bn ¼ npMyzn=ðPynLÞ
E Young’s modulus of elasticity
G shear modulus of elasticity
Iw warping section constant
Ix, Iy major and minor axis second moments of area
J torsion section constant
L length of arch
M applied concentrated moment about ox axis
Mys first mode flexural-torsional buckling moment of a beam in uniform bending
Mysa first mode flexural-torsional buckling moment of a restrained beam in uniform bending
Mysn nth mode flexural-torsional buckling moment of a beam in uniform bending
Mh first mode flexural-torsional buckling moment of an arch in uniform bending
Mhn nth mode flexural-torsional buckling moment of an arch in uniform bending
Mhna nth mode flexural-torsional buckling moment of a restrained arch in uniform bending
Mha first mode flexural-torsional buckling moment of a restrained arch in uniform bending
N stress resultant (centroidal axial force)
P an arbitrary point in cross-section
Psn nth mode torsional buckling load of a column in uniform axial compression
Psna nth mode torsional buckling load of a restrained column in uniform axial compression
Pshn nth mode torsional buckling load of an arch in uniform axial compression
Pshna nth mode torsional buckling load of a restrained arch in uniform axial compression
Py first mode flexural buckling load of a column in uniform axial compression
Pyn nth mode flexural buckling load of a column in uniform axial compression
Pyna nth mode flexural buckling load of a restrained column in uniform axial compression
Pyhna nth mode flexural buckling load of a restrained arch in uniform axial compression
Ph first mode flexural-torsional buckling load of an arch in uniform axial compression
Phn nth mode flexural-torsional buckling load of an arch in uniform axial compression
Phna nth mode flexural-torsional buckling load of a restrained arch in uniform axial compression
Pha first mode flexural-torsional buckling load of a restrained arch in uniform axial compression
qy radial distributed load
R arch radius
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIx þ IyÞ=A

p
tP distance from mid-thickness surface
u, v, w displacements of shear centre in the ox, oy, os directions
v0, w0 prebuckling radial and longitudinal displacements
V volume of member
w axial displacement of the centroid in the os direction
x, y, s coordinates in the ox, oy, os direction
yr distance of continuous minor axis rotational restraints from shear centre
yt distance of continuous lateral-translational restraints from shear centre
ars stiffness of a continuous torsional restraint
ary stiffness of a continuous minor axis rotational restraint
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arch at closely spaced intervals. Examples of these include purlin-sheeting systems. Continuous restraints
induce actions which resist the buckling deflections, rotations, twist rotations, twists and warping dis-
placements. These restraints are usually assumed to be elastic, in which case they may be characterised by
their elastic stiffnesses.
Studies of the influence of elastic restraints on the elastic flexural or torsional buckling of columns and

the elastic flexural-torsional buckling of beams have been extensive. Winter (1958), Taylor and Ojalvo
(1966), Nethercot (1973), Mutton and Trahair (1973), Ojalvo and Chambers (1977), Svensson and Plum
(1983), Bradford (1989), Yura (1993), Trahair and Bradford (1998), Valentino and Trahair (1998) and
Helwig and Yura (1999) can be cited among others. A summary of research work on the effects of elastic
restraints in the elastic flexural buckling of columns and the elastic flexural-torsional buckling of beams can
be found in Trahair (1993). The elastic flexural-torsional buckling of unrestrained arches has been studied
by a number of researchers. Closed form solutions for arches subjected to uniformly distributed radial
loads (that produce uniform axial compression) or equal and opposite end moments (that produce uniform
bending) have been obtained (Timoshenko and Gere, 1961; Vlasov, 1961; Yang and Kuo, 1987; Papangelis
and Trahair, 1987; Rajasekaran and Padmanabhan, 1989; Trahair, 1993; Pi et al., 1995). However, studies
of the effects of elastic restraints on the elastic flexural-torsional buckling of arches do not appear to have
been reported, and it is not known whether research findings relevant to the flexural-torsional buckling of
restrained beams and the flexural or torsional buckling behaviour of restrained columns can be extended
directly to arches. Because the flexural-torsional buckling resistance of unrestrained arches decreases with
the increase of the included angle as the arch becomes deeper, it may sometimes be thought that certain
arches require significant lateral bracing. However, the curved profile of an arch is quite different from that
of a straight member, so that the distribution of restraining actions along the arch induced by the restraints
is quite different from that along a straight member. The elastic restraints produce both restraining bending

at stiffness of a continuous lateral-translational restraint
aw stiffness of a continuous warping restraint
d first variation
d2 second variation
cP shear strain at P
�P longitudinal normal strain at P
P total potential
rP longitudinal normal stress at P
sP shear stress at P due to uniform torsion
/ twist rotation of cross-section about the shear centre axis
H arch included angle
x section warping function

Fig. 1. Arches and out-of-plane restraint elements.
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and torsional actions in an arch during buckling, while they produce only restraining bending actions
(lateral-translational and minor axis rotational restraints) or only restraining torsional actions (torsional
and warping restraints) in a straight member during buckling. Because of the different distributions of these
restraining actions, lateral-translational restraints may be more efficient for arches than for beams.
Therefore, research into this grey area of the out-of-plane buckling of restrained arches is much needed to
fill an important gap in structural mechanics.
Arches are supported at both ends, usually in such a way that the relative end deflections away from each

other are prevented, in which case the arch resists general loading by a combination of axial compression
and bending actions. Before investigating the effects of elastic restraints on the flexural-torsional buckling
of arches under arbitrary loading, the effects of elastic restraints on the flexural-torsional buckling of arches
in uniform axial compression and in uniform bending (Fig. 2) need to be studied. The purpose of this paper
is to study effects of elastic continuous restraints on the elastic flexural-torsional buckling of arches of
doubly symmetric I-section in uniform bending and in uniform axial compression.

2. Total potential formulation

2.1. Elastic continuous restraints

A variable coordinate system oxys is introduced as shown in Fig. 2(a). The origin of the axis system
coincides with the shear centre o of the cross-section of undeformed arch. The axes ox and oy coincide with
the major and minor principal axes of the cross-section of undeformed arch. The axis oy also points to the
centre of the undeformed arch. The axis os coincides with the shear centre axis of the undeformed arch.
An arch subjected to in-plane loading may suddenly buckle in a flexural-torsional mode. The vector of

the buckling deformations fdg can be defined by

fdg ¼ fu; u0;/;/0gT ð1Þ

where u is the displacement of the shear centre o in the direction of the axis ox, u0 is the rotation about the
axis oy, / is the twist rotation of the cross-section about the axis os, and /0 is the twist per unit length about
the axis os (Fig. 2(a)).
These buckling deformations may be restrained continuously by a lateral-translational restraint of

stiffness at which acts at a distance yt from the shear centre, by a minor axis rotational restraint of stiffness
ary which acts at a distance yr from the shear centre, by a torsional restraint of stiffness ars, and/or by a
warping restraint of stiffness aw (Fig. 2(b)). It is assumed that the restraints deform with the arch during

Fig. 2. Continuous restraint actions.
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buckling, but remain in their original position and parallel to their original directions and planes. The
actions exerted by these restraints to the arch are (Fig. 2(c)): the restraining force per unit length atðu� yt/Þ
parallel to the axis ox exerted by the lateral-translational restraint, the restraining moment per unit length
aryðu0 � yt/

0Þ about an axis at yt that is parallel to the axis oy exerted by the minor axis rotational restraint,
the restraining torque per unit length ars/ about the axis os exerted by the torsional restraint, and the
restraining bimoment per unit length exerted by the warping restraint that is formed by the two opposite
flange moments aw/

0=h where h is the distance between the flange centroids as shown in Fig. 2(b).
The shear centre actions exerted by these restraints can then be expressed as

frg ¼ ½ab
fdg ð2Þ

where frg is the vector of shear centre actions given by

frg ¼ ffrx;mry ;mrs; brsg ð3Þ

in which frx is the restraining force at the shear centre per unit length in the negative direction of the axis ox,
mry is the restraining moment per unit length at the shear centre about the negative direction of the axis oy,
mrs is the restraining torque per unit length at the shear centre about the negative direction of the axis os,
and brs is the bimoment per unit length at the shear centre about the negative direction of the axis os (Fig.
2(d)); and the matrix of restaining stiffnesses ½ab
 is given by

½ab
 ¼

at 0 �atyt 0
0 ary 0 �aryyr

�atyt 0 aty2t þ ars 0
0 �aryyr 0 aryy2r þ aw

2
664

3
775 ð4Þ

It is noted that the restraining force frx and the restraining moment mry induce both bending and torsional
restraining actions in an arch during buckling, while they induce only a bending restraining action in a
straight member during buckling. The restraining torque mrs induces both torsional and bending restraining
actions in an arch during buckling, while it induces only a torsional restraining action in a straight member
during buckling.

2.2. Total potential

The total potential of a restrained arch in uniform bending and uniform compression actions can be
written as

P ¼
Z
V
f�P cPgfrP sPgT dvþ

Z L

0

frgTfdgds�
Z L

0

qyvdsþ
X

fRgTfDg �
X
0;L

ð�Mxv0Þ ð5Þ

where �P is the longitudinal normal strain at a point P on the cross-section that satisfies the Vlasov as-
sumptions (Vlasov, 1961) given by (Pi et al., 1995; Pi and Bradford, 2001)

�P ¼ w0
�

� v
R

�
þ 1
2
u0
2 þ 1

2
v0
�

þ w
R

�2
� x u00 cos/



þ v00
�

þ w0

R

�
sin/ þ sin/

R

�

þ y u00 sin/



� v00
�

þ w0

R

�
cos/ � cos/

R
þ 1
R

�
� x /00

�
� u00

R

�
þ 1
2
x2
�

þ y2
�

/0
�

� u0

R

�2
ð6Þ

in which x, y are the coordinates of the point P in the principal axes oxy as shown in Fig. 3(a), x is the
section warping function; cP is the shear strain at a point P on the cross-section due to uniform torsion and
given by (Vlasov, 1961; Pi et al., 1995; Pi and Bradford, 2001)
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cP ¼
�2ðy þ h

2
Þð/0 � u0

RÞ for the top flange

2xð/0 � u0

RÞ for the web

�2ðy � h
2
Þð/0 � u0

RÞ for the bottom flange

8><
>: ð7Þ

and rP and sP are the longitudinal normal and uniform torsional shear stresses given by

rP ¼ E�P and sP ¼ GcP ð8Þ
in which E is the Young’s modulus of elasticity and G is the shear modulus of elasticity.

3. Energy equation

Because it can accurately predict the flexural-torsional buckling of an arch (Pi et al., 1995), the classical
buckling theory is used herein to establish the critical condition for the buckling. In the classical theory, the
critical condition for buckling is that the second variation 1

2
d2P of the total potential P given by (5)

vanishes for any arbitrary variation of the displacement field. This buckling criterion is often called the
energy equation which can be stated in a standard variational form as

1

2
d2P ¼

Z L

0

F ðs; u; u0; u00;/;/0;/00Þds ¼ 0 ð9Þ

and from (5)

F ðs; u; u0; u00;/;/0;/00Þ ¼ 1
2

EIy u00
�"(

þ /
R

�2
þ EIw /00

�
� u00

R

�2
þ GJ /0

�
� u0

R

�#

þ N ðu0Þ2
"

þ r20 /0
�

� u0

R

�2#
þ M 2u00/



þ /2

R

�
þ fdgT½ab
fdg

)
ð10Þ

where the variation signs d for the variation of the lateral buckling displacement du and the buckling twist
rotation d/ have been dropped for simplicity, L is the length of the arch, Iy is the second moment of the
area of the cross-section about the minor axis oy, Iw is the warping constant of the cross-section; J is the
torsion constant of the cross-section; r0 is the polar gyration radius of the cross-section defined by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ix þ Iy
A

r
ð11Þ

Fig. 3. Arch cross-section and properties.
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in which A is the area of the cross-section and Ix is the second moment of the area of the cross-section about
its major axis; and N and M are the prebuckling stress resultants given by

N ¼
Z
A

rP0 dA ¼ EAðw0
0 � v0=RÞ ð12Þ

and

M ¼
Z
A

rP0y dA ¼ EIxðv000 þ w0
0=RÞ ð13Þ

in which v0 and w0 are the prebuckling radial and axial displacements respectively.
The differential equilibrium equations for the flexural-torsional buckling of an arch can be obtained from

the energy equation (9) by invoking the calculus of variations, according to which the functions u and /
which make the functional

1

2
d2P ¼

Z L

0

F ðs; u; u0; u00;/;/0;/00Þds ð14Þ

stationary satisfy the Euler–Lagrange equations

oF
ou

� d

ds
oF
ou0

� �
þ d2

ds2
oF
ou00

� �
¼ 0 ð15Þ

and

oF
o/

� d

ds
oF
o/0

� �
þ d2

ds2
oF
o/00

� �
¼ 0 ð16Þ

which leads to

½EIyðu00 þ /=RÞ
00 � ½EIwð/00 � u00=RÞ=R
00 þ ½GJð/0 � u0=RÞ=R
0 þ atu� atyt/ � ðaryu0Þ0

þ ðaryyr/0Þ0 � ðNu0Þ0 þ ½Nð/0 � u0=RÞðr20=RÞ

0 þ ðM/Þ00 ¼ 0 ð17Þ

for bending about the minor axis oy, and to

EIyðu00 þ /=RÞ=Rþ ½EIwð/00 � u00=RÞ
00 � ½GJð/0 � u0=RÞ
0 þ ðars þ aty2t Þ/ � ½ðaw þ aryy2r Þ/
0
0

� atytuþ ðaryyru0Þ0 � ½Nr20ð/
0 � u0=RÞ
0 þMu00 þM/=R ¼ 0 ð18Þ

for torsion about the shear axis os.

4. Arches in uniform bending

4.1. Flexural-torsional buckling

As shown in Fig. 4(a), when a continuously restrained arch that is simply supported in-plane (the
boundary conditions are vA ¼ vB ¼ wA ¼ 0) and out-of-plane (the boundary conditions are uA ¼ uB ¼
/A ¼ /B) is subjected to equal and opposite end moments Mx about the axes ox through the both ends of
undeformed arch, the arch is primarily under uniform bending action and its horizontal reactions are equal
to zero. It is assumed that the end moments Mx remain in the initial acting positions during deformation
and do not move with ends of the arch. The restrained arch in uniform bending may suddenly buckle under
a constant buckling moment Mx and the possible buckled configuration can be approximated by
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u
d
¼ /

u
¼ sin nps

L
ð19Þ

where d and u are the maximum values of u and / and n is the number of buckled half waves around the
arch axis.
Substituting (19) into (17) and (18) leads to

1

2

L
2

n2p2

L2
d
u

� �T
k11 k12
k21 k22


 �
d
u

� �
¼ 0 ð20Þ

where

k11 ¼ 1

"
þ a2nb

2
n þ

atðL=npÞ2 þ ary
Pyn

#
Pyn ð21Þ

k12 ¼ k21 ¼ � an
bn

"
þ anbn þ

aryyr þ atytðL=npÞ2

Mysn
þ M
Mysn

#
Mysn ð22Þ

k22 ¼ 1

"
þ a2n
b2n

þ ðars þ aty2t ÞðL=npÞ
2

r20Psn
þ ðaw þ aryy2r Þ

r20Psn
þ an
bn

M
Mysn

#
r20Psn ð23Þ

The dimensionless parameters an and bn in (21)–(23) are defined as

an ¼
L
npR

ð24Þ

bn ¼
npMysn

PynL
ð25Þ

where Pyn is the nth mode minor axis flexural buckling load of a column in uniform axial compression given
by

Pyn ¼
n2p2EIy
L2

ð26Þ

and Mysn is the nth mode flexural-torsional buckling moment of a beam in uniform bending given by

Mysn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20PynPsn

q
ð27Þ

Fig. 4. Arches in uniform bending and uniform compression.
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in which Psn is the nth mode torsional buckling load of a column in uniform axial compression given by

Psn ¼
1

r20
GJ
�

þ n2p2EIw
L2

�
ð28Þ

The condition for a nontrivial solution of d and u from Eq. (20) is

k12k21 ¼ k11k22 ð29Þ

which leads to the buckling moment of an unrestrained arch (ars ¼ aw ¼ ary ¼ at ¼ 0) in uniform bending
(Vlasov, 1961; Papangelis and Trahair, 1987; Pi et al., 1995)

Mhn ¼ khnMysn ð30Þ
where khn is the buckling factor for an unrestrained arch in uniform bending given by

khn ¼ �anbn �
an
2bn

þ a3nbn
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anbn þ

an
2bn

� a3nbn
2

� �2
þ ð1� a2nÞ

2

s
ð31Þ

The lowest buckling moment Mh of an unrestrained arch in uniform bending corresponds to a single half
sine wave buckled shape (n ¼ 1).
When the elastic restraints are considered, however, a number of trials generally need to be made before

the integer value of n which leads to the lowest buckling moment Mhn can be determined.

4.2. Torsional buckling

When the lateral displacements u and minor axis rotations u0 at the shear centre axis of a restrained arch
are fully prevented (u ¼ u0 ¼ 0), the arch may buckle torsionally and the differential equilibrium equation
for torsional buckling can be obtained from (18) as

EIy/=R2 þ ðEIw/00Þ00 � ðGJ/0Þ0 þ ars/ � ðaw/0Þ0 þM/=R ¼ 0 ð32Þ
The torsional buckling moment of the arch can be obtained from (32) by assuming / ¼ u sinðnps=LÞ as

Mhn

Mysn
¼ � an

bn

�
þ bn
an

�
ð33Þ

4.3. Effects of torsional and warping restraints

The lowest flexural-torsional buckling moment for an arch in uniform bending restrained by continuous
torsional and warping restraints corresponds to a single half sine wave (n ¼ 1), and can be obtained from
(29) as

Mha ¼ khaMys ð34Þ

where kha is the buckling factor for a restrained arch in uniform bending given by

kha ¼ �a1b1 �
a1
2b1

þ a31b1
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1b1 þ

a1
2b1

� a31b1
2

� �2
þ ð1� a21Þ

2 þ ð1þ a21b
2
1Þ

arsðL=pÞ2 þ aw
r20Ps

 !vuut
ð35Þ
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in which the parameters a1 and b1 are given by (24) and (25) with n ¼ 1 and Ps is the first mode torsional
buckling load of the corresponding column given by (28) with n ¼ 1, and Mys is the first mode flexural-
torsional buckling moment of the corresponding beam in uniform bending given by (27) with n ¼ 1.
The buckling moment given by (34) neglects the effects of prebuckling in-plane deflections which reduce

the radius of the arch and increase the buckling moment. An approximate increased buckling moment
including the effects of prebuckling in-plane deflections can be expressed in a similar way as that for an
unrestrained arch (Pi et al., 1995) and given by

Mhad ¼
Mhaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� Iy=IxÞð1� ðGJ þ p2EIw=L2Þ=2EIxÞ
p ð36Þ

The universal section 250UB37 shown in Fig. 3, with Young’s modulus of elasticity E ¼ 200,000 MPa and
shear modulus of elasticity G ¼ 80,000 MPa has been used (and also used later in this paper) to calculate
the buckling moment of restrained arches. To show further that the classical buckling theory can accurately
predict the flexural-torsional buckling resistance of restrained arches, the buckling moments given by (34)
and (36) are compared with results of a nonlinear finite element analysis (Pi and Trahair, 1996) in Fig. 5.
Because the nonlinear finite element analysis includes the effects of the prebuckling in-plane deflections, the
buckling moment predicted by finite element results are slightly higher than those predicted by Eq. (34) and
agree very well with those predicted by Eq. (36).
Variations of the dimensionless buckling moment Mha=Mys with the included angle H obtained from (34)

are shown in Fig. 6 for arches with different dimensionless restraining stiffness ars=Py . It can be seen that the
buckling moment of an unrestrained arch in uniform bending (ars=Py ¼ 0) decreases from Mha=Mys ¼ 1 to
Mha=Mys ¼ 0 as the included angle increases from H ¼ 0� to H ¼ 180�. It can be observed in Fig. 6 that
torsional restraints increase the buckling moment of an arch, and are more effective for arches with a larger
included angle than for arches with a smaller included angle.

4.4. Effects of minor axis rotational restraints

The lowest flexural-torsional buckling moment of a beam in uniform bending restrained by continuous
minor axis rotational restraints corresponds to a single half sine wave (Trahair, 1993). However, an arch
restrained by continuous minor axis rotational restraints may buckle in more than one half sine waves, and
the equation for the buckling moment can be obtained from (29) as

Fig. 5. Comparison with nonlinear analysis results.

2308 Y.-L. Pi, M.A. Bradford / International Journal of Solids and Structures 39 (2002) 2299–2322



A1
Mhna

Mysn

� �2
þ B1

Mhna

Mysn

� �
þ C1 ¼ 0 ð37Þ

where

A1 ¼ 1 ð38Þ

B1 ¼ 2anbn þ
an
bn

� a3nbn þ
ary
n2Py

2yrPyn
Mysn

�
� an
bn

�
ð39Þ

C1 ¼ �ð1� a2nÞ
2 � ary

n2Py
1
�"

� yr
R

�2
þ yrPyn

Mysn

�
� an
bn

�2#
ð40Þ

The lowest buckling moment Mhna for given restraining stiffness ary acting at yt may be determined
by calculating successive values of Mhna=Mys with the number of half waves n ¼ 1; 2; 3; . . . Fig. 7 shows a

Fig. 6. Flexural-torsional buckling moment for arches in uniform bending with continuous torsional restraints.

Fig. 7. Buckling mode for arches in uniform bending with continuous minor axis rotational restraints.
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typical case of the relationship of the dimensionless buckling moment Mhna=Mys with the number of half
waves when ary=Py ¼ 5 and ytPy=Mys ¼ 0. In general, these moments will decrease at first until the minimum
is reached, and will then increase. Thus the successive calculation may be terminated when there is an
increase in Mhna=Mys.
Variations of the dimensionless buckling moment Mhna=Mys with the dimensionless restraining stiffness

ary=Py obtained from (37) are shown in Fig. 8 for arches with different included angles H. It can be seen that
the number of half sine waves n corresponding to the lowest buckling moment increases with the increase of
the restraining stiffness ary=Py and the included angle H. For example, for the restraining stiffness
ary=Py ¼ 15, the beam (H ¼ 0�) buckles in a single half sine wave, the arch with an included angle H ¼ 10�
buckles in two half sine waves while the arch with an included angle H ¼ 90� buckles in three half sine
waves, while the arch with an included angle H ¼ 150� buckles in four half sine waves. It can also be seen in
Fig. 8 that continuous minor axis rotational restraints are much more effective for arches with a larger
included angle than for arches with a smaller included angle. For example, the buckling moment of an
unrestrained arch with an included angle H ¼ 90� (Mh=Mys � 0:12) is lower than that of an unrestrained
arch with an included angle H ¼ 10� (Mh=Mys � 0:77). However, when the arch is restrained by a contin-
uous minor axis rotational restraint of dimensionless stiffness ary=Py ¼ 10, the buckling moment of the arch
with H ¼ 90� (Mhna=Mys ¼ 7:99) is higher than that of the arch with H ¼ 10� (Mhna=Mys ¼ 4:75).
When the value of the restraining stiffness ary approaches infinity, the limiting value of the dimensionless

buckling moment is

lim
ary=Py!1

Mhna

Mysn

� �
¼ ð1� anbnðyrPyn=MysnÞÞ2 þ ððyrPyn=MysnÞ � ðan=bnÞÞ2

2ððyrPyn=MysnÞ � ðan=2bnÞÞ
ð41Þ

which corresponds to the case where the arch buckles with an enforced centre of rotation. When the en-
forced centre of rotation is the shear centre of the cross-section, the limiting value (41) (yr ¼ 0) is equal to
the torsional buckling moment of an arch given by (33).
The limiting value (41) can be reduced to the following limiting value of the first mode buckling moment

for a beam when the included angle H ¼ 0� (i.e. n ¼ 1 and a1 ¼ 0) given by Trahair (1993)

lim
ary=Py!1

Mysa

Mys

� �
¼ 1
2

yrPy
Mys

�
þ Mys

yrPy

�
ð42Þ

Fig. 8. Flexural-torsional buckling of arches in uniform bending with continuous minor axis rotational restraints.
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It is of interest to note that when the minor axis rotations of an arch are fully prevented (u0 ¼ 0) at the arch
shear centre axis (yr ¼ 0 and ary ¼ 1), the arch will buckle torsionally at the moment

Mhn1

Mysn
¼ � bn

an

�
þ an
bn

�
ð43Þ

which is consistent with the torsional buckling moment of an unrestrained arch given by (33). However, for
a beam, when minor axis rotations are fully prevented (u0 ¼ 0) at yr ¼ 0, the beam does not buckle because
limH!0Mysh1=Mys ¼ 1.
It can be observed further from (41) that if the minor axis rotations of an arch are fully restrained at yr ¼

anMysn=2bnPyn i.e. yr ¼ Mysnan=ð2PynbnÞ ¼ LH=ð2n2p2Þ, the arch does not buckle because limyr!LH=ð2n2p2Þ
Mhn1=Mysn ¼ 1.
Variations of the dimensionless buckling moment Mhna=Mys with the dimensionless restraint height

yrPy=Mys obtained from (37) are shown in Fig. 9 for arches (included angle H ¼ 10�) with different values of
the dimensionless restraining stiffness ary=Py . In general, the buckling moment Mhna=Mys increases with an
increase in the restraining stiffness ary=Py . When the restraint acts above the shear centre (yrPy=Mys < 0), the
dimensionless buckling moment Mhna=Mys increases indefinitely with the restraining stiffness ary . Restraints
acting below the shear centre (yrPy=Mys > 0) are comparatively ineffective. It can also be seen that the
number of half sine waves n corresponding to the lowest buckling moment increases with a decrease in the
restraint height from yrPy=Mys ¼ 2 (below the shear centre) to yrPy=Mys ¼ �2 (above the shear centre).
Variations of the dimensionless buckling moment Mhna=Mys with the dimensionless restraining stiffness

ary=Py obtained from (37) are shown in Fig. 10 for arches (included angle H ¼ 10� and dimensionless re-
straint height ytPy=Mys ¼ 0) with different values of the torsional parameter K defined by

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p2EIw
GJL2

r
ð44Þ

It can be seen that the number of half sine waves n corresponding to the lowest buckling moment increases
as the torsional parameter K decreases.

Fig. 9. Effects of restraint height on buckling of arches in uniform bending with continuous minor axis rotational restraints.
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4.5. Effects of lateral-translational restraints

Arches restrained by continuous lateral-translational restraints may buckle in n half sine waves, and the
equation for the flexural-torsional buckling moment can be obtained from (29) as

A2
Mhna

Mysn

� �2
þ B2

Mhna

Mysn

� �
þ C2 ¼ 0 ð45Þ

where

A2 ¼ 1 ð46Þ

B2 ¼ 2anbn þ
an
bn

� a3nbn þ
atðL=pÞ2

n4Py

2ytPyn
Mysn

�
� an
bn

�
ð47Þ

C2 ¼ �ð1� a2nÞ
2 � atðL=pÞ2

n4Py
1
�"

� yt
R

�2
þ ytPyn

Mysn

�
� an
bn

�2#
ð48Þ

The lowest buckling moment Mhna for given restraining stiffness at acting at height yt may be determined in
the same way as for arches restrained by continuous minor axis rotational restraints as discussed above.
Variations of the dimensionless buckling moment Mhna=Mh with the dimensionless restraining stiffness

atðL=pÞ2=Py obtained from (45) are shown in Fig. 11 for arches with different included angle H. It can be
seen that the number n of half sine waves corresponding to the lowest buckling moment increases with the
increase of the restraining stiffness atðL=pÞ2=Py and the included angle H. For example, when
atðL=pÞ2=Py ¼ 15, the number of half sine waves n ¼ 2 for the beam (H ¼ 0�) and arches with included
angles H ¼ 10� and 30�, and n ¼ 3 for the arch with H ¼ 60�. Continuous lateral-translational restraints
are much more effective for arches with a larger included angle than for arches with a smaller included
angle.
Variations of the dimensionless buckling moment Mhna=Mys with the dimensionless restraint height

ytPy=Mys obtained from (45) are shown in Fig. 12 for arches (included angle H ¼ 10�) with different values

Fig. 10. Effects of torsional parameter on buckling of arches in uniform bending with continuous minor axis rotational restraints.
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of the dimensionless restraining stiffness atðL=pÞ2=Py . In general, the buckling moment Mhna=Mys in-
creases with an increase in the restraining stiffness atðL=pÞ2=Py . When the restraint acts above the shear
centre (ytPy=Mys < 0), the buckling moment Mhna=Mys increases indefinitely with the increase of the re-
straining stiffness atðL=pÞ2=Py . Restraints acting below the shear centre (ytPy=Mys > 0) are comparatively
ineffective. The number of half sine waves n corresponding to the lowest buckling moment increases
whenthe restraint position ytPy=Mys moves from below the shear centre (yt > 0) to above the shear centre
(yt < 0).
Variations of the dimensionless buckling moment Mhna=Mys with the dimensionless restraining stiffness

atðL=pÞ2Py obtained from (45) are shown in Fig. 13 for arches (included angle H ¼ 10� and dimensionless
restraint height ytPy=Mys ¼ 0) with different values of the torsional parameter K. It can be seen that the
number of half sine waves n during buckling increases as the torsional parameter K decreases.

Fig. 11. Flexural-torsional buckling of arches in uniform bending with continuous lateral-translational restraints.

Fig. 12. Effect of restraint height on buckling of arches in uniform bending with continuous lateral-translational restraints.
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5. Arches in uniform axial compression

5.1. Flexural-torsional buckling

As shown in Fig. 4(b), when an arch that is pin-ended in-plane (the boundary conditions are vA ¼ vB ¼
wA ¼ wB ¼ 0) and simply supported out-of-plane (the boundary conditions are uA ¼ uB ¼ /A ¼ /B) is
subjected to a radial load qy uniformly distributed around the arch axis that acts in the direction of the
minor principal axis of the cross-section of the undeformed arch and towards the centre of the undeformed
arch and remains in the initial acting position during deformation, the arch is primarily under uniform axial
compression action P ¼ qyR which is related to the axial stress resultant N as P ¼ �N . An arch in uniform
compression restrained by continuous elastic restraints may buckle in a flexural-torsional mode and its
possible buckled shapes can be approximated by

u
d
¼ /

u
¼ sin nps

L
ð49Þ

which corresponds to n buckled half sine waves around the length L of the arch.
Substituting (49) into (17) and (18) leads to

1

2

n2p2

L2
d
u

� �T
k11 k12
k21 k22


 �
d
u

� �
¼ 0 ð50Þ

where

k11 ¼ 1

"
þ a2nb

2
n þ

atðL=npÞ2 þ ary
Pyn

� 1

�
þ r20
R2

�
P
Pyn

#
Pyn ð51Þ

k12 ¼ k21 ¼ � an
bn

"
þ anbn þ

aryyr þ atytðL=npÞ2

Mysn
� r20
R

Pyn
Mysn

P
Pyn

#
Mysn ð52Þ

Fig. 13. Effect of torsional parameter on buckling of arches in uniform bending with continuous lateral-translational restraints.
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k22 ¼ 1

"
þ a2n
b2n

þ ðars þ aty2t ÞðL=npÞ
2

r20Psn
þ ðaw þ aryy2r Þ

r20Psn
� Pyn
Psn

P
Pyn

#
r20Psn ð53Þ

Eq. (50) has nontrivial solutions for d and u when

k12k21 ¼ k11k22 ð54Þ

which leads to the flexural-torsional buckling load of an unrestrained arch in uniform compression

Phn ¼ khnPyn ð55Þ

where khn is the buckling factor of an unrestrained arch in uniform compression given by

khn ¼
1

2

Psn
Pyn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2n

b2n

� �2
þ 2 a2n

b2n
� 1

� �
ð1� a2nÞ

2 Pyn
Psn

þ ð1� a2nÞ
4 P

2
yn

P 2sn

s2
4 � 1

�
þ a2n
b2n

�
� ð1� a2nÞ

2 Pyn
Psn

3
5

ð56Þ

and Pyn and Psn are given by (26) and (28), respectively.
The lowest buckling load Ptheta of an unrestrained arch corresponds to a single sine wave buckled shape

and is given by (55) with n ¼ 1. The lowest buckling load Ptheta decreases from Py to zero as the included
angle increases from H ¼ 0� to 180� as shown in Fig. 14(a).
It is worth pointing out that the uniformly distributed radial load qy is different from one that stays

normal to the deformed arch such as hydrostatic pressure.

5.2. Flexural buckling

When the twist rotations of the cross-section are fully prevented (/ ¼ /0 ¼ /00 ¼ 0), a restrained arch in
uniform compression may buckle in a flexural mode. The differential equilibrium equation for flexural
buckling of an arch can be obtained from (17) as

ðEIyu00Þ00 þ ðEIwu00=R2Þ00 � ðGJu0=R2Þ0 þ atu� ðaryu0Þ0 � ðNu0Þ0 � ðNu0r20=R2Þ
0 ¼ 0 ð57Þ

Substituting u ¼ d sinðnps=LÞ into (57) leads to the flexural buckling load of a restrained arch in uniform
axial compression given by

Pyhna ¼ �N ¼ 1

1þ r20=R2
ðnpÞ2EIy

L2

"
þ GJ

 
þ ðnpÞ2EIw

L2

!
1

R2
þ atL2

ðnpÞ2
þ ary

#
ð58Þ

which can be reduced to the flexural buckling load of a doubly symmetric column about its minor principal
axis given by (Trahair, 1993)

Fig. 14. Buckling of arches in uniform compression.
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Pyna ¼ n2Py þ
atL2

ðnpÞ2
þ ary ð59Þ

The lowest flexural buckling load Pyh of an arch corresponds to a single half sine wave buckled shape and is
given by (58) with n ¼ 1 and at ¼ ary ¼ 0. The lowest flexural buckling load Pyh increases slightly with the
increase of the included angle H as shown in Fig. 14(b).

5.3. Torsional buckling

When the lateral deformations of a restrained arch in uniform compression are fully prevented
(u ¼ u0 ¼ u00 ¼ 0), it may buckle in a torsional mode. The differential equilibrium equation for the torsional
buckling of a restrained arch can be obtained from (18) as

EIy/=R2 þ ðEIw/00Þ00 � ðGJ/0Þ0 þ ars/ � ½ðawÞ/0
0 � ðNr20/
0Þ0 ¼ 0 ð60Þ

Substituting / ¼ u sinðnps=LÞ into (60) leads to the torsional buckling load

Pshna ¼ �N ¼ 1

r20

H2EIy
ðnpÞ2

"
þ GJ

 
þ ðnpÞ2EIw

L2

!
þ arsL2

ðnpÞ2
þ aw

#
ð61Þ

which can be reduced to the torsional buckling load of a doubly symmetric column about its shear centre
axis given by (Trahair, 1993)

Psna ¼
1

r20
GJ

 "
þ ðnpÞ2EIw

L2

!
þ arsL2

ðnpÞ2
þ aw

#
ð62Þ

The lowest torsional buckling load of an unrestrained column corresponds to a single half sine wave.
However, the first mode torsional buckling load of an unrestrained arch is not necessarily the lowest one.
Again, the lowest torsional buckling load Pshn of an unrestrained arch in uniform compression can be
determined by calculating successive values of Pshn=Ps with the number of half sine waves n ¼ 1; 2; 3; . . .,
where Pshn is given by (61) with ars ¼ aw ¼ 0. In general, the values of Pshn=Ps will decrease at first until the
minimum is reached and then increase as shown in Fig. 14(c). Thus the successive calculation may be
terminated when there is an increase in Pshn=Ps.
When the length L is constant, the lowest torsional buckling load Pshn of an unrestrained arch in uniform

compression increases with an increase of the included angle H as shown in Fig. 14(d). It can also be seen
that the number of half sine waves n during torsional buckling increases with an increase of the included
angle H.

5.4. Effects of torsional and warping restraints

The lowest flexural-torsional buckling load of an arch in uniform compression restrained by continuous
torsional and warping restraints corresponds to a single half sine wave (n ¼ 1) (Trahair, 1993) and the
equation for the buckling load can be obtained from (54) as

A3
Pha

Py

� �2
þ B3

Pha

Py

� �
þ C3 ¼ 0 ð63Þ

where

A3 ¼
Py
Ps

ð64Þ
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B3 ¼ � 1

(
þ a2

b2
þ Py
Ps
1
�

� a2
�2 þ 1

�
þ r20
R2

�
arsðL=pÞ2 þ aw

r20Ps

)
ð65Þ

and

C3 ¼ ð1� a2Þ2 þ ð1þ a2b2Þ arsðL=pÞ2 þ aw
r20Ps

ð66Þ

Variations of the dimensionless buckling load Pha=Py with the included angle H are shown in Fig. 15 for
different values of the torsional restraining stiffness ars=Py . It can be seen that the buckling load Pha=Py
increases with an increase in the restraining stiffness ars=Py , except that the torsional restraint does not affect
the flexural buckling load of a column (H ¼ 0�). Torsional restraints are more effective for arches with a
larger included angle than for arches with a smaller included angle.

5.5. Effects of minor axis rotational restraints

The lowest flexural-torsional buckling load of a column in uniform compression restrained by contin-
uous minor axis rotational restraints corresponds to a single half sine wave (Trahair and Bradford, 1998).
However, an arch restrained by continuous minor axis rotational restraints may buckle in n half sine waves,
and the equation for the flexural-torsional buckling load can be obtained from (54) as

A4
Phna

Pyn

� �2
þ B4

Phna

Pyn

� �
þ C4 ¼ 0 ð67Þ

where

A4 ¼
Pyn
Psn

ð68Þ

B4 ¼ � 1

�
þ a2n
b2n

þ Pyn
Psn

1
�

� a2n
�2 þ ary

Psn
1
�


� yt
R

�2
þ y2t
r20

��
ð69Þ

Fig. 15. Flexural-torsional buckling of arches in uniform compression with continuous torsional restraints.
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and

C4 ¼ ð1� a2nÞ
2 þ ary

Pyn

an
bn

�"
� yrPyn
Mysn

�2
þ 1
�

� yt
R

�2#
ð70Þ

The lowest buckling load Phna for a given restraining stiffness ary acting at a height yr may be determined in
the same way as for arches in uniform bending restrained by continuous minor axis rotational restraints as
discussed above.
Variations of the dimensionless buckling load Phna=Py with the dimensionless restraint ary=Py acting at

yr ¼ 0 obtained from (67) are shown in Fig. 16 for arches with different included angle H. As the restraining
stiffness ary=Py increases, the buckling load Phna=Py of the arch increases until the value of the torsional
buckling load of the arch given by (61) is reached at a limiting value of the minor axis rotational restraining
stiffness ary . At this stage, the buckling mode of the arch may change from flexural-torsional to torsional.
To determine the limiting value of the restraining stiffness ary , the lowest torsional buckling load of the arch
given by (61) and the corresponding number of half sine waves n need to be found first. The value of ary can
then be found by equating the corresponding buckling load Phna of the arch obtained from (67) to the lowest
torsional buckling load Pshn that is found. Further increases of the restraining stiffness ary=Py do not increase
the buckling resistance as shown in Fig. 16. The buckling resistance of the arch remains at the value of the
torsional buckling load.
Variations of the dimensionless buckling load Pha=Py with the dimensionless restraint height yrPy=Mys

obtained from (67) when the dimensionless restraining stiffness is constant at ary=Py ¼ 10 are shown in Fig.
17 for arches with different included angles H ¼ 0–150�. Minor axis rotational restraints are more effective
for arches with a larger included angleH than for arches with a smaller included angleH. The most effective
height yrPy=Mys of the minor axis restraint moves from the shear centre (yr ¼ 0) for a column (H ¼ 0�) to
above the shear centre as the included angle H of the arch increases. As the restraint height yrPy=Mys moves
further above the most effective height, the buckling load of an arch decreases rapidly. Minor axis rota-
tional restraints acting below the shear centre (yrPy=Mys > 0) are comparatively ineffective. The number of
half sine waves n corresponding to the buckling load firstly increases as the restraint height moves from
below the shear centre toward to the shear centre and then decreases as the restraint height moves further
above the shear centre.
Variations of the dimensionless buckling load Pha=Py with the dimensionless restraint height yrPy=Mys

obtained from (67) for an arch with an included angle H ¼ 30� are shown in Fig. 18 for different restraining

Fig. 16. Flexural-torsional buckling of arches in uniform compression with continuous minor axis rotational restraints.
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stiffness ary=Py . The lowest buckling load of the restrained arch increases significantly as the restraining
stiffness increases from ary=Py ¼ 0:5 to 20. The corresponding number of half sine waves n also increases
with the restraining stiffness ary=Py . When the restraining stiffness ary=Py is higher than the corresponding
limiting value (for example when ary=Py ¼ 20 and �0:05P yrPy=Mys P � 0:15), the buckling mode changes
from flexural-torsional to torsional.

5.6. Effects of lateral-translational restraints

Arches with continuous lateral-translational restraints may buckle in n half sine waves, and the equation
for the flexural-torsional buckling load can be obtained from (54) as

A5
Phna

Pyn

� �2
þ B5

Phna

Pyn

� �
þ C5 ¼ 0 ð71Þ

Fig. 17. Effect of restraint height on buckling of arches in uniform compression with continuous minor axis rotational restraints.

Fig. 18. Effect of restraining stiffness on buckling of arches in uniform compression with continuous minor axis rotational restraints.
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where

A5 ¼
Pyn
Psn

ð72Þ

B5 ¼ � 1

(
þ a2n
b2n

þ Pyn
Psn

1
�

� a2n
�2 þ atðL=npÞ2

Psn
1
�


� yt
R

�2
þ y2t
r20

�)
ð73Þ

and

C5 ¼ ð1� a2nÞ
2 þ atðL=npÞ2

Pyn

an
bn

�"
� Pynyt
Mysn

�2
þ 1
�

� yt
R

�2#
ð74Þ

The lowest buckling load Phna for a given value of atðL=pÞ2Py and ytPy=Mys may be determined in the same
way as for arches with minor axis rotational restraint in uniform bending as discussed above.
Variations of the dimensionless buckling load Phna=Py with the dimensionless restraining stiffness

atðL=pÞ2=Py acting at yt ¼ 0 are shown in Fig. 19 for arches with different included angle H. The number of
half sine waves n corresponding to the lowest buckling load increases with an increase of the included angle
H. As the restraining stiffness atðL=pÞ2=Py increases, the flexural-torsional buckling load Pha=Py increases
until the value of the torsional buckling load of an arch in uniform compression given by (61) is reached at a
limiting value of the stiffness of the lateral-translational restraint atðL=pÞ2=Py . The limiting value of the
restraining stiffness atðL=pÞ2=Py can be determined in the same way as that for arches restrained by minor
axis rotational restraint.
Variations of the dimensionless buckling load Pha=Py with the dimensionless restraint height ytPy=Mys

obtained from (71) for specified values of the dimensionless restraining stiffness atðL=pÞ2=Py ¼ 20 are shown
in Fig. 20 for arches with different included angle H ¼ 0–150�. Restraints are more effective for arches with
a larger included angleH than for arches with a smaller included angleH. The most effective height ytPy=Mys

of the lateral-translational restraint moves from the shear centre (yt ¼ 0) for a column (H ¼ 0�) to above the
shear centre as the included angle H of the arch increases. As the restraint height ytPy=Mys moves further
above the most effective height, the buckling load of an arch decreases rapidly. Lateral-translational re-
straints acting below the shear centre (yrPy=Mys > 0) are comparatively ineffective. The number of half sine
waves n corresponding to the buckling load firstly increases as the restraint height yt moves from below the

Fig. 19. Flexural-torsional buckling of arches in uniform compression with lateral-translational restraints.
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shear centre toward to the shear centre and then decreases as the restraint height yt moves further above the
shear centre.

6. Conclusions

The research presented in this paper developed and used an energy method of analysis to study the effects
of continuous elastic restraints on the elastic flexural-torsional buckling of arches of doubly symmetric open
thin-walled cross-section in uniform bending and in uniform compression. Closed form solutions for the
flexural-torsional buckling moment of restrained arches in uniform bending and for the flexural-torsional
buckling load of restrained arches in uniform compression were obtained. The closed form solutions for
torsional buckling moment of restrained arches in uniform bending and for torsional buckling and flexural
buckling loads of restrained arch in uniform compression were also obtained. It can be concluded that

1. Continuous elastic restraints are more effective for arches with a larger included angle than for arches
with a smaller included angle.

2. When an arch in uniform bending or in uniform compression is restrained by continuous torsional and/
or warping restraints, the lowest buckling resistance of the arch corresponds to the first mode buckling
resistance.

3. However, when an arch in uniform bending or in uniform compression is restrained by lateral-transla-
tional and/or minor axis rotational restraints, the first mode buckling resistance may not correspond to
the lowest buckling resistance of the arch and the number of half sine waves corresponding to the lowest
buckling resistance increases with an increase in the stiffness of the restraints.

4. For an arch in uniform bending and restrained by the lateral-translational and/or minor axis rotational
restraints, when the stiffness of the restraints approaches infinity, the buckling mode of the arch changes
from being flexural-torsional to torsional about an enforced centre of rotation. However, for arches in
uniform compression and restrained by the lateral-translational and/or minor axis rotational restraints,
when the stiffness of the restraints approaches a limiting value instead of infinity, the buckling mode of
the arch changes from being flexural-torsional to torsional.

5. For an arch in uniform bending or in uniform compression and restrained by the lateral-translational
and/or minor axis rotational restraints, when the stiffness and height of the restraints are constant,

Fig. 20. Effect of restraint height on buckling of arches in uniform compression with lateral-translational restraints.
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the lowest buckling resistance and the corresponding number of half sine waves increase with the in-
cluded angle of the arch.

6. For an arch in uniform bending and restrained by the lateral-translational and/or minor axis rotational
restraints, as the restraint position moves from below the shear centre to above the shear centre, the low-
est buckling moment and the corresponding number of half sine waves increase. Restraints below the
shear centre are comparatively ineffective.

7. For an arch in uniform compression and restrained by the lateral-translational and/or minor axis rota-
tional restraints, as the restraint position moves from below the shear centre toward above the shear cen-
tre, the lowest buckling load and the corresponding number of half sine waves increase first and then
decrease. Restraints away from the shear centre are ineffective.
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