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Abstract

Arches are often connected to other members which influence the structural behaviour of the arch. These members
induce restraining actions during flexural-torsional buckling which restrict the buckled shapes of the arch and may
significantly influence its buckling response. This paper uses an energy method to study the elastic flexural-torsional
buckling of continuously restrained arches of doubly symmetric open thin-walled cross-section in uniform bending and
in uniform axial compression. Closed form solutions for the flexural-torsional buckling moment of restrained arches in
uniform bending and for the flexural-torsional buckling load of restrained arches in uniform axial compression are
obtained. It is found that the elastic continuous restraints are more effective in increasing the buckling resistance for
arches with a large included angle than for arches with a small included angle. The first buckling mode may not
correspond to the lowest buckling moment or load for arches restrained by minor axis rotational or lateral-translational
restraints. It is also found that the number of half sine waves corresponding to the lowest buckling moment or load
increases with the stiffness of the restraints. For restrained arches in uniform axial compression, when the restraining
stiffness exceeds a limiting value, the buckling mode may change from flexural-torsional to torsional. © 2002 Published
by Elsevier Science Ltd.

Keywords: Arch; Buckling; Continuous; Elastic; Flexural-torsional; Lateral-translational; Minor axis rotational; Restraint; Torsional;
Warping

1. Introduction

Arches are often connected one to another by other structural members which influence in the flexural-
torsional buckling action of the arch, and which may significantly influence its flexural-torsional buckling
load. Roof sheeting, braces and secondary members such as purlins (Fig. 1) often have the function of
increasing the buckling resistance of the arch, while fulfilling their other obvious structural roles. Such
braces induce restraining actions which restrict the buckled configuration of the arch, and increase its
buckling resistance. Continuous restraints are usually considered to be uniform along the length of an arch,
and are often used to approximate the actions of discrete restraining members which are connected to the
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Nomenclature
A cross-section area
a, = L/(Rnn)
by = nnMwn/(PynL)
E Young’s modulus of elasticity
G shear modulus of elasticity
I, warping section constant
I, I,  major and minor axis second moments of area
J torsion section constant
L length of arch
M applied concentrated moment about ox axis
M, first mode flexural-torsional buckling moment of a beam in uniform bending
My, first mode flexural-torsional buckling moment of a restrained beam in uniform bending
My, nth mode flexural-torsional buckling moment of a beam in uniform bending
My first mode flexural-torsional buckling moment of an arch in uniform bending
My, nth mode flexural-torsional buckling moment of an arch in uniform bending
Mo,y nth mode flexural-torsional buckling moment of a restrained arch in uniform bending
My, first mode flexural-torsional buckling moment of a restrained arch in uniform bending
N stress resultant (centroidal axial force)
P an arbitrary point in cross-section
P, nth mode torsional buckling load of a column in uniform axial compression
P, nth mode torsional buckling load of a restrained column in uniform axial compression
P, nth mode torsional buckling load of an arch in uniform axial compression
Piono nth mode torsional buckling load of a restrained arch in uniform axial compression
P, first mode flexural buckling load of a column in uniform axial compression
P, nth mode flexural buckling load of a column in uniform axial compression
P nth mode flexural buckling load of a restrained column in uniform axial compression
Piony nth mode flexural buckling load of a restrained arch in uniform axial compression
Py first mode flexural-torsional buckling load of an arch in uniform axial compression
Py, nth mode flexural-torsional buckling load of an arch in uniform axial compression
Py nth mode flexural-torsional buckling load of a restrained arch in uniform axial compression
Py, first mode flexural-torsional buckling load of a restrained arch in uniform axial compression
qy radial distributed load
R arch radius
ro = (Ix + Iy)/A
tp distance from mid-thickness surface
u, v, w displacements of shear centre in the ox, oy, os directions
vy, wo  prebuckling radial and longitudinal displacements
V volume of member
w axial displacement of the centroid in the os direction
x, y, s coordinates in the ox, oy, os direction
Ve distance of continuous minor axis rotational restraints from shear centre
W distance of continuous lateral-translational restraints from shear centre
Ol stiffness of a continuous torsional restraint
Olry stiffness of a continuous minor axis rotational restraint
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o stiffness of a continuous lateral-translational restraint
Oy stiffness of a continuous warping restraint

0 first variation

5 second variation

Vp shear strain at P

€p longitudinal normal strain at P

n total potential

ap longitudinal normal stress at P

Tp shear stress at P due to uniform torsion

¢ twist rotation of cross-section about the shear centre axis
(2] arch included angle

w section warping function

braces

secondary member
sheeting %

arch arch

(@) (©)

Fig. 1. Arches and out-of-plane restraint elements.

arch at closely spaced intervals. Examples of these include purlin-sheeting systems. Continuous restraints
induce actions which resist the buckling deflections, rotations, twist rotations, twists and warping dis-
placements. These restraints are usually assumed to be elastic, in which case they may be characterised by
their elastic stiffnesses.

Studies of the influence of elastic restraints on the elastic flexural or torsional buckling of columns and
the elastic flexural-torsional buckling of beams have been extensive. Winter (1958), Taylor and Ojalvo
(1966), Nethercot (1973), Mutton and Trahair (1973), Ojalvo and Chambers (1977), Svensson and Plum
(1983), Bradford (1989), Yura (1993), Trahair and Bradford (1998), Valentino and Trahair (1998) and
Helwig and Yura (1999) can be cited among others. A summary of research work on the effects of elastic
restraints in the elastic flexural buckling of columns and the elastic flexural-torsional buckling of beams can
be found in Trahair (1993). The elastic flexural-torsional buckling of unrestrained arches has been studied
by a number of researchers. Closed form solutions for arches subjected to uniformly distributed radial
loads (that produce uniform axial compression) or equal and opposite end moments (that produce uniform
bending) have been obtained (Timoshenko and Gere, 1961; Vlasov, 1961; Yang and Kuo, 1987; Papangelis
and Trahair, 1987; Rajasekaran and Padmanabhan, 1989; Trahair, 1993; Pi et al., 1995). However, studies
of the effects of elastic restraints on the elastic flexural-torsional buckling of arches do not appear to have
been reported, and it is not known whether research findings relevant to the flexural-torsional buckling of
restrained beams and the flexural or torsional buckling behaviour of restrained columns can be extended
directly to arches. Because the flexural-torsional buckling resistance of unrestrained arches decreases with
the increase of the included angle as the arch becomes deeper, it may sometimes be thought that certain
arches require significant lateral bracing. However, the curved profile of an arch is quite different from that
of a straight member, so that the distribution of restraining actions along the arch induced by the restraints
is quite different from that along a straight member. The elastic restraints produce both restraining bending
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Fig. 2. Continuous restraint actions.

and torsional actions in an arch during buckling, while they produce only restraining bending actions
(lateral-translational and minor axis rotational restraints) or only restraining torsional actions (torsional
and warping restraints) in a straight member during buckling. Because of the different distributions of these
restraining actions, lateral-translational restraints may be more efficient for arches than for beams.
Therefore, research into this grey area of the out-of-plane buckling of restrained arches is much needed to
fill an important gap in structural mechanics.

Arches are supported at both ends, usually in such a way that the relative end deflections away from each
other are prevented, in which case the arch resists general loading by a combination of axial compression
and bending actions. Before investigating the effects of elastic restraints on the flexural-torsional buckling
of arches under arbitrary loading, the effects of elastic restraints on the flexural-torsional buckling of arches
in uniform axial compression and in uniform bending (Fig. 2) need to be studied. The purpose of this paper
is to study effects of elastic continuous restraints on the elastic flexural-torsional buckling of arches of
doubly symmetric I-section in uniform bending and in uniform axial compression.

2. Total potential formulation
2.1. Elastic continuous restraints

A variable coordinate system oxys is introduced as shown in Fig. 2(a). The origin of the axis system
coincides with the shear centre o of the cross-section of undeformed arch. The axes ox and oy coincide with
the major and minor principal axes of the cross-section of undeformed arch. The axis oy also points to the
centre of the undeformed arch. The axis os coincides with the shear centre axis of the undeformed arch.

An arch subjected to in-plane loading may suddenly buckle in a flexural-torsional mode. The vector of
the buckling deformations {d} can be defined by

{d} = {uu,$,4'}' (1)

where u is the displacement of the shear centre o in the direction of the axis ox, ' is the rotation about the
axis 0y, ¢ is the twist rotation of the cross-section about the axis os, and ¢’ is the twist per unit length about
the axis os (Fig. 2(a)).

These buckling deformations may be restrained continuously by a lateral-translational restraint of
stiffness o, which acts at a distance y, from the shear centre, by a minor axis rotational restraint of stiffness
oy, Which acts at a distance y, from the shear centre, by a torsional restraint of stiffness oy, and/or by a
warping restraint of stiffness a,, (Fig. 2(b)). It is assumed that the restraints deform with the arch during
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buckling, but remain in their original position and parallel to their original directions and planes. The
actions exerted by these restraints to the arch are (Fig. 2(c)): the restraining force per unit length o (v — i)
parallel to the axis ox exerted by the lateral-translational restraint, the restraining moment per unit length
o, (U — ') about an axis at y, that is parallel to the axis oy exerted by the minor axis rotational restraint,
the restraining torque per unit length o;,¢ about the axis os exerted by the torsional restraint, and the
restraining bimoment per unit length exerted by the warping restraint that is formed by the two opposite
flange moments o, ¢’ /h where h is the distance between the flange centroids as shown in Fig. 2(b).
The shear centre actions exerted by these restraints can then be expressed as

{r} = [m]{d} N
where {r} is the vector of shear centre actions given by
{r} = {fre, Mry, Mes, brs} y

in which f;, is the restraining force at the shear centre per unit length in the negative direction of the axis ox,
myy, is the restraining moment per unit length at the shear centre about the negative direction of the axis oy,
my 18 the restraining torque per unit length at the shear centre about the negative direction of the axis os,
and b, is the bimoment per unit length at the shear centre about the negative direction of the axis os (Fig.
2(d)); and the matrix of restaining stiffnesses [o,] is given by

Ot 0 — 0 0
_ 0 O‘ry 0 - O‘ryy T
e 0 “)
0 — Oy )r 0 %y, 1'2 + oy

It is noted that the restraining force f;, and the restraining moment m,, induce both bending and torsional
restraining actions in an arch during buckling, while they induce only a bending restraining action in a
straight member during buckling. The restraining torque m,, induces both torsional and bending restraining
actions in an arch during buckling, while it induces only a torsional restraining action in a straight member
during buckling.

2.2. Total potential

The total potential of a restrained arch in uniform bending and uniform compression actions can be
written as

= / {er 1Hop o} dv+ / ()" {d}ds / gods + S (RY{D} - 3 (M) (5)

where ¢p is the longitudinal normal strain at a point P on the cross-section that satisfies the Vlasov as-
sumptions (Vlasov, 1961) given by (Pi et al., 1995; Pi and Bradford, 2001)

_ /_B) l,z l(/ K)z_ " " K/ . Sin¢
€P—<W R +2u +2 +R x|u"cos ¢+ v+R 51nq§+—R

/ 1 7\ 2
—|—y[u”sind)— <U,,+%>COS¢—CO;¢+I—1€] _w< //_%) +%(x2+y2)<¢/_%> (6)

in which x, y are the coordinates of the point P in the principal axes oxy as shown in Fig. 3(a), w is the
section warping function; y, is the shear strain at a point P on the cross-section due to uniform torsion and
given by (Vlasov, 1961; Pi et al., 1995; Pi and Bradford, 2001)



2304 Y.-L. Pi, M. A. Bradford | International Journal of Solids and Structures 39 (2002) 2299-2322

B=0.1464m ‘
e

\
t,,=0.0064m ‘-i—l

.
D=0.2559m

1= 05577 x10 "
I= 05706 x10 °m

J= 01478 x10 'm’
L= 09136 x10 m®
A= 04760 x10~m’
E= 200 x10° MPa
G= 80 x10" MPa

*[[:0.0109“]
* '

(a) Section (b) Properties

Fig. 3. Arch cross-section and properties.

—2(y+1)(¢' —%) for the top flange
7 =13 2x(¢' — %) for the web (7

—2(y —1)(¢' — %) for the bottom flange
and op and 7p are the longitudinal normal and uniform torsional shear stresses given by

op = Eep and Tp = G'}/’P (8)

in which E is the Young’s modulus of elasticity and G is the shear modulus of elasticity.

3. Energy equation

Because it can accurately predict the flexural-torsional buckling of an arch (Pi et al., 1995), the classical
buckling theory is used herein to establish the critical condition for the buckling. In the classical theory, the
critical condition for buckling is that the second variation %5217 of the total potential IT given by (5)
vanishes for any arbitrary variation of the displacement field. This buckling criterion is often called the
energy equation which can be stated in a standard variational form as

1 L
380 = [ Flsuad il 9./, ¢)ds =0 9)
0

and from (5)
2

¢ 2 u" o
N\ 2 2
(M’)2+r§(¢/—%> ¢

+M{2u”¢+7} —I—{d}T[ocb]{d}} (10)
where the variation signs ¢ for the variation of the lateral buckling displacement du and the buckling twist
rotation 8¢ have been dropped for simplicity, L is the length of the arch, I, is the second moment of the
area of the cross-section about the minor axis oy, I, is the warping constant of the cross-section; J is the
torsion constant of the cross-section; ry is the polar gyration radius of the cross-section defined by

1
F(S7 u, u/a l/l/,, ¢7 d)/a d)”) = 5 {

+ N

I.+1,
11
- (1)

ro =
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in which A4 is the area of the cross-section and I, is the second moment of the area of the cross-section about
its major axis; and N and M are the prebuckling stress resultants given by

N = / opod4 = EA(wy — vo/R) (12)
4
and
M= / opoydd4 = EL(vy + w,/R) (13)
y

in which vy and wy are the prebuckling radial and axial displacements respectively.

The differential equilibrium equations for the flexural-torsional buckling of an arch can be obtained from
the energy equation (9) by invoking the calculus of variations, according to which the functions u and ¢
which make the functional

L
200 = [Pl i 4.9 (14)
0
stationary satisfy the Euler-Lagrange equations
oF d (oF\ d* [oF
aw(a) +d_<6> =0 (15)
and
oF d [oF d* [ oF
o (ar) “ae (agr) 0 1o
which leads to
[EL(u" + ¢/R))" — [EL(¢" —u"/R)/R]" + [GJ (¢ — o/ /R)/R]' + otus — ouyp — (owmtd)’
+ (on¢) = (Nu') + [N(§' — ' [R) (15 /R)] + (M¢)" = 0 (17)

for bending about the minor axis oy, and to

EL(u" + ¢/R)/R + [EL(¢" — " /R)]" = [GI (¢ — /' /R)] + (otes + 0007 — [(otw + 0try7) D]
— oy + (o yed ) — [Nro( —u'/R)] + Mu" +M¢p/R =0 (18)

for torsion about the shear axis os.

4. Arches in uniform bending
4.1. Flexural-torsional buckling

As shown in Fig. 4(a), when a continuously restrained arch that is simply supported in-plane (the
boundary conditions are v, = vz = wy, = 0) and out-of-plane (the boundary conditions are uy = up =
¢, = ¢jp) is subjected to equal and opposite end moments M, about the axes ox through the both ends of
undeformed arch, the arch is primarily under uniform bending action and its horizontal reactions are equal
to zero. It is assumed that the end moments M, remain in the initial acting positions during deformation
and do not move with ends of the arch. The restrained arch in uniform bending may suddenly buckle under
a constant buckling moment M, and the possible buckled configuration can be approximated by
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End moments M act about the fixed axes Radial load gy acts inthe direction
ox at undeformed ends A and B , of the minor principal axis oy of
. . the cross-section of the undeformed
Horizontal reactions at ends A and B are arch
equal to zero. :
(a) Arch in uniform bending (b) Arch in uniform compression

Fig. 4. Arches in uniform bending and uniform compression.

u ¢ . nms
5 = 5 = SIHT (19)
where 6 and ¢ are the maximum values of u and ¢ and n is the number of buckled half waves around the

arch axis.
Substituting (19) into (17) and (18) leads to

11_4 7’12712 o T k“ k12 0 -0 (20)
22 L7 | o ko kn ||
where
L/nn)’ + o
by = |1+ @ 4 2D o | (21)
P)’”
ay oye +ogi(L/nm)’ M
kip =k = —|—+ a,b, 2 M., 22
12 21 b, + a,b, + M, + M, | (22)
@ (o + o)) (L/nm) (o +omal) a
oy = |1+ 2+ L A Py 23
2=t P, RPw by My, | 2
The dimensionless parameters a, and b, in (21)—(23) are defined as
L
= 24
“ nnR (24)
nnM,
b, = Bl 25
Pl (25)

where P, is the nth mode minor axis flexural buckling load of a column in uniform axial compression given
by
2.2
n"n°El,

Py =" (26)

and M,,, is the nth mode flexural-torsional buckling moment of a beam in uniform bending given by

My, = /3PP, (27)
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in which P, is the nth mode torsional buckling load of a column in uniform axial compression given by

1 n*m*El,
P,==|(GJ 28
HCE 2
The condition for a nontrivial solution of § and ¢ from Eq. (20) is
kiokar = kiky (29)

which leads to the buckling moment of an unrestrained arch (o, = o = o, = o = 0) in uniform bending
(Vlasov, 1961; Papangelis and Trahair, 1987; Pi et al., 1995)

M()n = k()nAlysn (30)
where kg, is the buckling factor for an unrestrained arch in uniform bending given by
a, ab a, @b, \’ )
I o n—n no_ %pn )
b= g () o

The lowest buckling moment M, of an unrestrained arch in uniform bending corresponds to a single half
sine wave buckled shape (n = 1).

When the elastic restraints are considered, however, a number of trials generally need to be made before
the integer value of n which leads to the lowest buckling moment My, can be determined.

4.2. Torsional buckling

When the lateral displacements # and minor axis rotations #’ at the shear centre axis of a restrained arch
are fully prevented (u = «' = 0), the arch may buckle torsionally and the differential equilibrium equation
for torsional buckling can be obtained from (18) as

E1y¢/R2 + (EIW¢,/)// - (GJ¢/)/ + o — (MW¢,)/ +M¢/R =0 (32)
The torsional buckling moment of the arch can be obtained from (32) by assuming ¢ = ¢ sin(nns/L) as

M(?n _ ay bn

Mysn B (bn * ay ) (33)

4.3. Effects of torsional and warping restraints

The lowest flexural-torsional buckling moment for an arch in uniform bending restrained by continuous
torsional and warping restraints corresponds to a single half sine wave (n = 1), and can be obtained from
(29) as

Mﬂx = kﬁochx (34)

where kg, is the buckling factor for a restrained arch in uniform bending given by

aib a @ oy (L)) + oy
2b; 2

2
a 2
kopy = —a1by — —+—+ (albl +2b1 ) ) +(1- a%) +(1 +a%bf)< V(Z)PS

(35)
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in which the parameters a; and b, are given by (24) and (25) with n» = 1 and P, is the first mode torsional
buckling load of the corresponding column given by (28) with n =1, and M, is the first mode flexural-
torsional buckling moment of the corresponding beam in uniform bending given by (27) with n = 1.

The buckling moment given by (34) neglects the effects of prebuckling in-plane deflections which reduce
the radius of the arch and increase the buckling moment. An approximate increased buckling moment
including the effects of prebuckling in-plane deflections can be expressed in a similar way as that for an
unrestrained arch (Pi et al., 1995) and given by

M()a
Mg = \/(1 —1,/L)(1 — (GJ + m2El,/L*)/2EL) (36)

The universal section 250UB37 shown in Fig. 3, with Young’s modulus of elasticity £ = 200,000 MPa and
shear modulus of elasticity G = 80,000 MPa has been used (and also used later in this paper) to calculate
the buckling moment of restrained arches. To show further that the classical buckling theory can accurately
predict the flexural-torsional buckling resistance of restrained arches, the buckling moments given by (34)
and (36) are compared with results of a nonlinear finite element analysis (Pi and Trahair, 1996) in Fig. 5.
Because the nonlinear finite element analysis includes the effects of the prebuckling in-plane deflections, the
buckling moment predicted by finite element results are slightly higher than those predicted by Eq. (34) and
agree very well with those predicted by Eq. (36).

Variations of the dimensionless buckling moment M, /M,, with the included angle ® obtained from (34)
are shown in Fig. 6 for arches with different dimensionless restraining stiffness o, /P,. It can be seen that the
buckling moment of an unrestrained arch in uniform bending (o, /P, = 0) decreases from My, /M,, =1 to
My, /M,; = 0 as the included angle increases from @ = 0° to ® = 180°. It can be observed in Fig. 6 that
torsional restraints increase the buckling moment of an arch, and are more effective for arches with a larger
included angle than for arches with a smaller included angle.

4.4. Effects of minor axis rotational restraints

The lowest flexural-torsional buckling moment of a beam in uniform bending restrained by continuous
minor axis rotational restraints corresponds to a single half sine wave (Trahair, 1993). However, an arch
restrained by continuous minor axis rotational restraints may buckle in more than one half sine waves, and
the equation for the buckling moment can be obtained from (29) as

N
n

[N]

n

™~

——— Nonlinear finite element result

Buckling moment given by (36)

o
n

- - — - Buckling moment given by (34)

Dimensionless moment M/Mys, M6o/Mys, M6ad/Mys

L=4m, ©=10°
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Central twist rotation ¢ (radians)

=)

(=]

Fig. 5. Comparison with nonlinear analysis results.
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0 20 40 60 80 100 120 140 160 180
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Fig. 6. Flexural-torsional buckling moment for arches in uniform bending with continuous torsional restraints.
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A =1 (38)
a o 2».P, a
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C 1 12 Olry 1 i\ WP, a, ? 40
l__( _an) _nZPy ( _E) +(Mys‘n_b_n) ( )
The lowest buckling moment M,,, for given restraining stiffness o, acting at ) may be determined
by calculating successive values of Mjy,,/M,, with the number of half waves n =1,2,3,... Fig. 7 shows a
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Fig. 7. Buckling mode for arches in uniform bending with continuous minor axis rotational restraints.
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Fig. 8. Flexural-torsional buckling of arches in uniform bending with continuous minor axis rotational restraints.

typical case of the relationship of the dimensionless buckling moment Mjy,,/M,, with the number of half
waves when o, /P, = 5 and yP,/M,, = 0. In general, these moments will decrease at first until the minimum
is reached, and will then increase. Thus the successive calculation may be terminated when there is an
increase in Mo,y /M,;.

Variations of the dimensionless buckling moment Mjy,,/M,, with the dimensionless restraining stiffness
o,/ P, obtained from (37) are shown in Fig. 8 for arches with different included angles ©. It can be seen that
the number of half sine waves n corresponding to the lowest buckling moment increases with the increase of
the restraining stiffness o, /P, and the included angle ©. For example, for the restraining stiffness
o, /P, = 15, the beam (© = 0°) buckles in a single half sine wave, the arch with an included angle ® = 10°
buckles in two half sine waves while the arch with an included angle @ = 90° buckles in three half sine
waves, while the arch with an included angle ® = 150° buckles in four half sine waves. It can also be seen in
Fig. 8 that continuous minor axis rotational restraints are much more effective for arches with a larger
included angle than for arches with a smaller included angle. For example, the buckling moment of an
unrestrained arch with an included angle ® = 90° (My/M,, ~ 0.12) is lower than that of an unrestrained
arch with an included angle @ = 10° (M,/M,, ~ 0.77). However, when the arch is restrained by a contin-
uous minor axis rotational restraint of dimensionless stiffness o, /P, = 10, the buckling moment of the arch
with @ = 90° (My,,/M,; = 7.99) is higher than that of the arch with © = 10° (My,,/M,, = 4.75).

When the value of the restraining stiffness o, approaches infinity, the limiting value of the dimensionless
buckling moment is

. Mﬁna _ (1 - anbﬂ(yrf’yﬂ/Mysn)>2 + ((eryn/Mvsn> - (an/bn))z
i () - 20 M) — (a0 25,) “

which corresponds to the case where the arch buckles with an enforced centre of rotation. When the en-
forced centre of rotation is the shear centre of the cross-section, the limiting value (41) (3, = 0) is equal to
the torsional buckling moment of an arch given by (33).

The limiting value (41) can be reduced to the following limiting value of the first mode buckling moment
for a beam when the included angle ® = 0° (i.e. » = 1 and a; = 0) given by Trahair (1993)

. M, 1 (wP, M,
1 wo \ _ L[ Wby s 47
:4n,/})l;lloo ( Mrs ) 2 (M}’S +ery> ( )

1[)’/P)‘_>OO
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It is of interest to note that when the minor axis rotations of an arch are fully prevented (¢’ = 0) at the arch
shear centre axis () = 0 and «,, = 00), the arch will buckle torsionally at the moment

M917oo bn a
— (2O 4
M, (a,, + b, ) (43)

ysn

which is consistent with the torsional buckling moment of an unrestrained arch given by (33). However, for
a beam, when minor axis rotations are fully prevented (¢’ = 0) at y, = 0, the beam does not buckle because
lim@_;o MysOoo/MyS = Q.

It can be observed further from (41) that if the minor axis rotations of an arch are fully restrained at y, =
ayM,,/2b,P,, ie. y; = Myya,/(2P,b,) = LO/(2n*n*), the arch does not buckle because lim, ;/m.2x2)
M{]noo/MVSn = Q.

Variations of the dimensionless buckling moment Mj,,/M,, with the dimensionless restraint height
»P,/M,; obtained from (37) are shown in Fig. 9 for arches (included angle ® = 10°) with different values of
the dimensionless restraining stiffness «,,/P,. In general, the buckling moment Mj,,/M,, increases with an
increase in the restraining stiffness «,,/P,. When the restraint acts above the shear centre (y.P,/M,, < 0), the
dimensionless buckling moment Mjy,,/M,, increases indefinitely with the restraining stiffness o,,. Restraints
acting below the shear centre ().P,/M,, > 0) are comparatively ineffective. It can also be seen that the
number of half sine waves n corresponding to the lowest buckling moment increases with a decrease in the
restraint height from y.P,/M,, = 2 (below the shear centre) to y.P,/M,, = —2 (above the shear centre).

Variations of the dimensionless buckling moment Mj,,/M,, with the dimensionless restraining stiffness
oy, /P, obtained from (37) are shown in Fig. 10 for arches (included angle ® = 10° and dimensionless re-
straint height yP,/M,, = 0) with different values of the torsional parameter K defined by

n2El,
K=/ 44
GJL? (44)
It can be seen that the number of half sine waves n corresponding to the lowest buckling moment increases
as the torsional parameter K decreases.

0=10°

2,
=
3
&
=

n=

1 1.5 2

Fig. 9. Effects of restraint height on buckling of arches in uniform bending with continuous minor axis rotational restraints.
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Fig. 10. Effects of torsional parameter on buckling of arches in uniform bending with continuous minor axis rotational restraints.

4.5. Effects of lateral-translational restraints

Arches restrained by continuous lateral-translational restraints may buckle in » half sine waves, and the
equation for the flexural-torsional buckling moment can be obtained from (29) as

M, \? Mo,
A2<A/[6 > +32<MH )+C2—() (45)

ysn ysn

where
42=1 (46)
an o (L/n)z 2ytP’n a,
By, =2 Vlbﬂ 7 an A 47
R Sy VS (47)
2 2
e u(l/m) N\ (P an

The lowest buckling moment M,,, for given restraining stiffness o, acting at height y; may be determined in
the same way as for arches restrained by continuous minor axis rotational restraints as discussed above.

Variations of the dimensionless buckling moment M,,,/M, with the dimensionless restraining stiffness
o(L/m)’ /P, obtained from (45) are shown in Fig. 11 for arches with different included angle ©. It can be
seen that the number 7 of half sine waves corresponding to the lowest buckling moment increases with the
increase of the restraining stiffness o (L/7)’ /P, and the included angle ©. For example, when
o (L/m)* /P, =15, the number of half sine waves n = 2 for the beam (& = 0°) and arches with included
angles ® = 10° and 30°, and » = 3 for the arch with ® = 60°. Continuous lateral-translational restraints
are much more effective for arches with a larger included angle than for arches with a smaller included
angle.

Variations of the dimensionless buckling moment Mjy,,/M,, with the dimensionless restraint height
WP,/M, obtained from (45) are shown in Fig. 12 for arches (included angle ® = 10°) with different values
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Fig. 11. Flexural-torsional buckling of arches in uniform bending with continuous lateral-translational restraints.
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Fig. 12. Effect of restraint height on buckling of arches in uniform bending with continuous lateral-translational restraints.

of the dimensionless restraining stiffness oct(L/n)z/Py. In general, the buckling moment Mj,,/M,, in-
creases with an increase in the restraining stiffness o,(L/7)’/P,. When the restraint acts above the shear
centre (WP,/M,s < 0), the buckling moment My,,/M,, increases indefinitely with the increase of the re-
straining stiffness o (L/7)* /P,. Restraints acting below the shear centre (WP,/M,, > 0) are comparatively
ineffective. The number of half sine waves n corresponding to the lowest buckling moment increases
whenthe restraint position y.P,/M,, moves from below the shear centre (), > 0) to above the shear centre
e <0).

Variations of the dimensionless buckling moment Mjy,,/M,, with the dimensionless restraining stiffness
o (L/ n)zPy obtained from (45) are shown in Fig. 13 for arches (included angle ® = 10° and dimensionless
restraint height yP,/M,, = 0) with different values of the torsional parameter K. It can be seen that the
number of half sine waves n during buckling increases as the torsional parameter K decreases.
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Fig. 13. Effect of torsional parameter on buckling of arches in uniform bending with continuous lateral-translational restraints.

5. Arches in uniform axial compression
5.1. Flexural-torsional buckling

As shown in Fig. 4(b), when an arch that is pin-ended in-plane (the boundary conditions are v, = vz =
wy = wpz = 0) and simply supported out-of-plane (the boundary conditions are uy = up = ¢, = ¢p) is
subjected to a radial load g, uniformly distributed around the arch axis that acts in the direction of the
minor principal axis of the cross-section of the undeformed arch and towards the centre of the undeformed
arch and remains in the initial acting position during deformation, the arch is primarily under uniform axial
compression action P = ¢,R which is related to the axial stress resultant N as P = —N. An arch in uniform
compression restrained by continuous elastic restraints may buckle in a flexural-torsional mode and its
possible buckled shapes can be approximated by

which corresponds to n buckled half sine waves around the length L of the arch.
Substituting (49) into (17) and (18) leads to

1 22 T

1w 0 ki ke 0 -0 (50)
2 L7 |¢ ko k|| o

where
o (L/nm)* + o, B\ P
kn=|1+ap2 + = 2 (1+2) —|B, (51)
P, R*)P, |
a, deyyr + ot (L/nm)’ 1 Py, P

ki =k = — | =+ a,b, +— -3 M, 52
e e 7 R My, Py | 52
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@ (o + o) (L/nn)* (o +0n)?) Py P
by = |1 “n TS t W ) A b 2133;; 53
Eq. (50) has nontrivial solutions for ¢ and ¢ when
kioky = kiika (54)

which leads to the flexural-torsional buckling load of an unrestrained arch in uniform compression
P(:)n = anI)yn (55)
where £k, is the buckling factor of an unrestrained arch in uniform compression given by

1P a2\? a? , P, Wi a’ P,
] 4o 2 V(1 — @) (1 =) 2 (12 ) (1 = 2
""2P, \/< +b2> i <bﬁ >( “) p, (1@ 5 ( +b,%) =@,

n sn

(56)

and P,, and P, are given by (26) and (28), respectively.

The lowest buckling load Py, of an unrestrained arch corresponds to a single sine wave buckled shape
and is given by (55) with n = 1. The lowest buckling load Py, decreases from P, to zero as the included
angle increases from ® = 0° to 180° as shown in Fig. 14(a).

It is worth pointing out that the uniformly distributed radial load ¢, is different from one that stays
normal to the deformed arch such as hydrostatic pressure.

5.2. Flexural buckling

When the twist rotations of the cross-section are fully prevented (¢ = ¢’ = ¢” = 0), a restrained arch in
uniform compression may buckle in a flexural mode. The differential equilibrium equation for flexural
buckling of an arch can be obtained from (17) as

(ELu")" + (ELa" /R*)" — (GJu' /R*) + oqu — (oytd) — (NU')' — (Nu'rg /R*) = 0 (57)

Substituting u = d sin(nzs/L) into (57) leads to the flexural buckling load of a restrained arch in uniform
axial compression given by

1
14+12/R?

2
(nm)"E

Py(?mx =-N 12

(58)

nm W Ol
(nm)’Ely \ 1 N L? e
12 R2 (nn)Z ry

+<GJ+

which can be reduced to the flexural buckling load of a doubly symmetric column about its minor principal
axis given by (Trahair, 1993)

(a) 1.05 (®) 3 @)

L 1.04 :
,{;0'8 >1.03 £ 5
306 % % 4
A0.4 & 1.02 g7
02 1.01 N

0 1 1

0 50 100 150 0 50 100 150 0 0 1 150
O (degrees) © (degrees) @ (degrees)

Fig. 14. Buckling of arches in uniform compression.
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o L?

(nm)’
The lowest flexural buckling load P,y of an arch corresponds to a single half sine wave buckled shape and is

given by (58) with n = 1 and a, = o, = 0. The lowest flexural buckling load P, increases slightly with the
increase of the included angle ® as shown in Fig. 14(b).

Py = n*P, +

+ o, (59)

5.3. Torsional buckling

When the lateral deformations of a restrained arch in uniform compression are fully prevented
(u = u' = u" = 0), it may buckle in a torsional mode. The differential equilibrium equation for the torsional
buckling of a restrained arch can be obtained from (18) as

EL)/R + (EL¢")" — (GI¢) + orp — [(o0) 9] — (Nrgd') = 0 (60)
Substituting ¢ = ¢ sin(nns/L) into (60) leads to the torsional buckling load

(nm)’EIL, oty L2
L2 (7’17'[)2

1
2
o

O’El,

(nm)’

Pypy = —N = + oy (61)

+(GJ+

which can be reduced to the torsional buckling load of a doubly symmetric column about its shear centre
axis given by (Trahair, 1993)

2 2
Ely\ | ol

Gy MV ER ) | el
L (nm)

The lowest torsional buckling load of an unrestrained column corresponds to a single half sine wave.
However, the first mode torsional buckling load of an unrestrained arch is not necessarily the lowest one.
Again, the lowest torsional buckling load P, of an unrestrained arch in uniform compression can be
determined by calculating successive values of Py, /P, with the number of half sine waves n =1,2,3,...,
where Py, is given by (61) with o, = o, = 0. In general, the values of Py, /P, will decrease at first until the
minimum is reached and then increase as shown in Fig. 14(c). Thus the successive calculation may be
terminated when there is an increase in Py, /P;.

When the length L is constant, the lowest torsional buckling load Py, of an unrestrained arch in uniform
compression increases with an increase of the included angle ® as shown in Fig. 14(d). It can also be seen
that the number of half sine waves n during torsional buckling increases with an increase of the included
angle .

1
2
0

Pvnm = (62)

5.4. Effects of torsional and warping restraints

The lowest flexural-torsional buckling load of an arch in uniform compression restrained by continuous
torsional and warping restraints corresponds to a single half sine wave (n = 1) (Trahair, 1993) and the
equation for the buckling load can be obtained from (54) as

P \° Py,
m(%) +B3<%>+C3=0 (63)

Y Y

where

P,
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Fig. 15. Flexural-torsional buckling of arches in uniform compression with continuous torsional restraints.

a P, 2 12\ o (L))" + o
B:i= <1 +—4+22(1-4* ] 420 st/ LW
3 { e (L) =g (03

and

oo (L)) + oty

C=1-d)+1+dp)
1P,

(66)
Variations of the dimensionless buckling load Py, /P, with the included angle © are shown in Fig. 15 for
different values of the torsional restraining stiffness ay,/P,. It can be seen that the buckling load Py,/P,
increases with an increase in the restraining stiffness o, /P,, except that the torsional restraint does not affect
the flexural buckling load of a column (& = 0°). Torsional restraints are more effective for arches with a
larger included angle than for arches with a smaller included angle.

5.5. Effects of minor axis rotational restraints

The lowest flexural-torsional buckling load of a column in uniform compression restrained by contin-
uous minor axis rotational restraints corresponds to a single half sine wave (Trahair and Bradford, 1998).
However, an arch restrained by continuous minor axis rotational restraints may buckle in » half sine waves,
and the equation for the flexural-torsional buckling load can be obtained from (54) as

Pé)no( ? Pf)nx
A B =
(P) " 4(&)”“ 0 7
where
P
A= (68)

_ a, | P 02, Oy LR
B4——{1+E+Psn (l—an) +P—m|:( —E) +—2:|} (69)

n



2318 Y.-L. Pi, M. A. Bradford | International Journal of Solids and Structures 39 (2002) 2299-2322

30— ; ; "
yiPy/Mys=0 =
251
©=60°
second mode torsional buckling load
20+ 23 n= =
0=30°

>
% 15 . . 1
é first mode torsional bu a4

101 ®=0°

st n=1

510 15 20 25 30 35 40 45 50 55 60
ouy/Py

Fig. 16. Flexural-torsional buckling of arches in uniform compression with continuous minor axis rotational restraints.

and

Oy
CGi=(1 —a3)2+P—’

n

ay eryn ? Wt 2
(o) + 03]
The lowest buckling load P, for a given restraining stiffness o, acting at a height . may be determined in
the same way as for arches in uniform bending restrained by continuous minor axis rotational restraints as
discussed above.

Variations of the dimensionless buckling load Fy,,/P, with the dimensionless restraint oy, /P, acting at
¥ = 0 obtained from (67) are shown in Fig. 16 for arches with different included angle ©. As the restraining
stiffness o, /P, increases, the buckling load Pp,,/P, of the arch increases until the value of the torsional
buckling load of the arch given by (61) is reached at a limiting value of the minor axis rotational restraining
stiffness o,,. At this stage, the buckling mode of the arch may change from flexural-torsional to torsional.
To determine the limiting value of the restraining stiffness o, the lowest torsional buckling load of the arch
given by (61) and the corresponding number of half sine waves n need to be found first. The value of a,, can
then be found by equating the corresponding buckling load P, of the arch obtained from (67) to the lowest
torsional buckling load Py, that is found. Further increases of the restraining stiffness o,, /P, do not increase
the buckling resistance as shown in Fig. 16. The buckling resistance of the arch remains at the value of the
torsional buckling load.

Variations of the dimensionless buckling load Py, /P, with the dimensionless restraint height y,.P,/M,,
obtained from (67) when the dimensionless restraining stiffness is constant at a,,/P, = 10 are shown in Fig.
17 for arches with different included angles @ = 0-150°. Minor axis rotational restraints are more effective
for arches with a larger included angle @ than for arches with a smaller included angle ®. The most effective
height y.P,/M,, of the minor axis restraint moves from the shear centre (3, = 0) for a column (@ = 0°) to
above the shear centre as the included angle © of the arch increases. As the restraint height y,P, /M,, moves
further above the most effective height, the buckling load of an arch decreases rapidly. Minor axis rota-
tional restraints acting below the shear centre (y;P,/M,, > 0) are comparatively ineffective. The number of
half sine waves n corresponding to the buckling load firstly increases as the restraint height moves from
below the shear centre toward to the shear centre and then decreases as the restraint height moves further
above the shear centre.

Variations of the dimensionless buckling load Py, /P, with the dimensionless restraint height y,.P,/M,,
obtained from (67) for an arch with an included angle @ = 30° are shown in Fig. 18 for different restraining
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Fig. 17. Effect of restraint height on buckling of arches in uniform compression with continuous minor axis rotational restraints.
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Fig. 18. Effect of restraining stiffness on buckling of arches in uniform compression with continuous minor axis rotational restraints.

stiffness o,,/P,. The lowest buckling load of the restrained arch increases significantly as the restraining
stiffness increases from o,,/P, = 0.5 to 20. The corresponding number of half sine waves 7 also increases
with the restraining stiffness «,,/P,. When the restraining stiffness o,,/P, is higher than the corresponding
limiting value (for example when «,,/P, = 20 and —0.05 > y.P,/M,, = — 0.15), the buckling mode changes

from flexural-torsional to torsional.
5.6. Effects of lateral-translational restraints

Arches with continuous lateral-translational restraints may buckle in » half sine waves, and the equation
for the flexural-torsional buckling load can be obtained from (54) as

PHnoc ? P9na<
A B Cs=0 71
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where
P,
s =22 (72)
2 2
_ Ay D 2\2 (L/nm) M by
Bs = {1 + 2 +Pm (1—a) + 7 ( R) + 2 (73)
and
L/nn)’ | (a, Py’ 2
— (1 — &2)? L Zn Tt _2t 4
CS ( an) - Pyn bn My.m * ( R) (7 )

The lowest buckling load Py,, for a given value of o,(L/n)’P, and y.P,/M,, may be determined in the same
way as for arches with minor axis rotational restraint in uniform bending as discussed above.

Varlatlons of the dimensionless buckling load Fy,,/P, with the dimensionless restraining stiffness
o (L/m)* /P, acting at y; = 0 are shown in Fig. 19 for arches with different included angle . The number of
half sine waves n corresponding to the lowest buckling load increases with an increase of the included angle
O. As the restraining stiffness o, (L/7)’/P, increases, the flexural-torsional buckling load Py, /P, increases
until the value of the torsional buckling load of an arch in uniform compression given by (61) is reached at a
limiting value of the stlffness of the lateral-translational restraint o (L/x)* /P,. The limiting value of the
restraining stiffness o (L/7)’ /P, can be determined in the same way as that for arches restrained by minor
axis rotational restraint.

Variations of the dimensionless buckling load Py, /P, with the dimensionless restralnt height »P,/M,
obtained from (71) for specified values of the dimensionless restraining stiffness o, (L /)’ /P, =20 are shown
in Fig. 20 for arches with different included angle ® = 0-150°. Restraints are more effective for arches with
a larger included angle @ than for arches with a smaller included angle ©. The most effective height P, /M,
of the lateral-translational restraint moves from the shear centre (y, = 0) for a column (@ = 0°) to above the
shear centre as the included angle @ of the arch increases. As the restraint height y.P,/M,, moves further
above the most effective height, the buckling load of an arch decreases rapidly. Lateral-translational re-
straints acting below the shear centre (y.P,/M,, > 0) are comparatively ineffective. The number of half sine
waves n corresponding to the buckling load firstly increases as the restraint height y, moves from below the

t mode torsional buckling load
B=10°

first mode topsional buckling load

15

ytPy/Mys=0

10+

Péno/Py

O =30 2 0 e 7 80 9%
o(L/my* /Py

Fig. 19. Flexural-torsional buckling of arches in uniform compression with lateral-translational restraints.
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Fig. 20. Effect of restraint height on buckling of arches in uniform compression with lateral-translational restraints.

shear centre toward to the shear centre and then decreases as the restraint height y, moves further above the
shear centre.

6. Conclusions

The research presented in this paper developed and used an energy method of analysis to study the effects
of continuous elastic restraints on the elastic flexural-torsional buckling of arches of doubly symmetric open
thin-walled cross-section in uniform bending and in uniform compression. Closed form solutions for the
flexural-torsional buckling moment of restrained arches in uniform bending and for the flexural-torsional
buckling load of restrained arches in uniform compression were obtained. The closed form solutions for
torsional buckling moment of restrained arches in uniform bending and for torsional buckling and flexural
buckling loads of restrained arch in uniform compression were also obtained. It can be concluded that

1. Continuous elastic restraints are more effective for arches with a larger included angle than for arches
with a smaller included angle.

2. When an arch in uniform bending or in uniform compression is restrained by continuous torsional and/
or warping restraints, the lowest buckling resistance of the arch corresponds to the first mode buckling
resistance.

3. However, when an arch in uniform bending or in uniform compression is restrained by lateral-transla-
tional and/or minor axis rotational restraints, the first mode buckling resistance may not correspond to
the lowest buckling resistance of the arch and the number of half sine waves corresponding to the lowest
buckling resistance increases with an increase in the stiffness of the restraints.

4. For an arch in uniform bending and restrained by the lateral-translational and/or minor axis rotational
restraints, when the stiffness of the restraints approaches infinity, the buckling mode of the arch changes
from being flexural-torsional to torsional about an enforced centre of rotation. However, for arches in
uniform compression and restrained by the lateral-translational and/or minor axis rotational restraints,
when the stiffness of the restraints approaches a limiting value instead of infinity, the buckling mode of
the arch changes from being flexural-torsional to torsional.

5. For an arch in uniform bending or in uniform compression and restrained by the lateral-translational
and/or minor axis rotational restraints, when the stiffness and height of the restraints are constant,
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the lowest buckling resistance and the corresponding number of half sine waves increase with the in-
cluded angle of the arch.

6. For an arch in uniform bending and restrained by the lateral-translational and/or minor axis rotational
restraints, as the restraint position moves from below the shear centre to above the shear centre, the low-
est buckling moment and the corresponding number of half sine waves increase. Restraints below the
shear centre are comparatively ineffective.

7. For an arch in uniform compression and restrained by the lateral-translational and/or minor axis rota-
tional restraints, as the restraint position moves from below the shear centre toward above the shear cen-
tre, the lowest buckling load and the corresponding number of half sine waves increase first and then
decrease. Restraints away from the shear centre are ineffective.
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